1、浏览器渲染原理
在讲 DOM 操作的最佳性能实践之前,先介绍下浏览器的基本渲染原理。浏览器渲染展示网页的主流程大致可以用下图表示:
图:WebKit 主流程
分为以下四个步骤:
- 解析HTML(HTML Parser)
- 构建DOM树(DOM Tree)
- 渲染树构建(Render Tree)
- 绘制渲染树(Painting)
浏览器请求解析(Parser) HTML 文档,并将各标记逐个转化成 DOM 节点(DOM Tree)。同时也会解析外部 CSS 文件以及样式元素中的样式数据。HTML 中这些带有视觉指令的样式信息将用于创建另一个树结构:呈现树(Render Tree)。呈现树(Render Tree)包含多个带有视觉属性(如颜色和尺寸)的矩形。这些矩形的排列顺序就是它们将在屏幕上显示的顺序。呈现树(Render Tree)构建完毕之后,进入“布局”处理阶段,也就是为每个节点分配一个应出现在屏幕上的确切坐标。下一个阶段是绘制(Painting) - 浏览器会遍历呈现树(Render Tree),由用户界面后端层将每个节点绘制出来。
需要着重指出的是,这是一个渐进的过程。为达到更好的用户体验,浏览器会力求尽快将内容显示在屏幕上。它不必等到整个 HTML 文档解析完毕之后,就会开始构建呈现树和设置布局。在不断接收和处理来自网络的其余内容的同时,浏览器会将部分内容解析并显示出来。
2、Repaints and reflows
Repaint:可以理解为重绘或重画,当render tree中的一些元素需要更新属性,而这些属性只是影响元素的外观,风格,而不会影响布局的,例如改变背景颜色 。则就叫称为重绘。
Reflows:可以理解为回流、布局或者重排,当渲染树(render Tree)中的一部分(或全部)因为元素的规模尺寸,布局,隐藏等改变而需要重新构建。这就称为回流(reflow),也就是重新布局(relayout)。
回流或者重绘何时触发?
改变用于构建渲染树的任何内容都可能导致重绘或回流,例如:
1、添加,删除,更新DOM节点
2、用display: none(回流和重绘)或者visibility: hidden隐藏节点(只有重绘,因为没有几何更改)
3、添加样式表,调整样式属性
4、调整窗口大小,更改字体大小
5、页面初始化的渲染
6、移动DOM元素
。。。
我们来看几个例子:
var bstyle = document.body.style; // cache
bstyle.padding = "20px"; // reflow, repaint
bstyle.border = "10px solid red"; // another reflow and a repaint
bstyle.color = "blue"; // repaint only, no dimensions changed
bstyle.backgroundColor = "#fad"; // repaint
bstyle.fontSize = "2em"; // reflow, repaint
// new DOM element - reflow, repaint
document.body.appendChild(document.createTextNode('dude!'));
我们可以想象一下,如果直接在渲染树(render Tree)最后面增加或者删除一个节点,这对于浏览器渲染页面来说无伤大雅,因为只需要在渲染树(render Tree)的末端重绘那一部分变动的节点。但是,如果是在页面的顶部变动一个节点,浏览器需要重新计算渲染树(render Tree),导致渲染树(render Tree)的一部分或全部发生变化。渲染树(render Tree)重新建立后,浏览器会重新绘制页面上受影响的元素。重排的代价比重绘的代价高很多,重绘会影响部分的元素,而重排则有可能影响全部的元素。
3、DOM 操作最佳实践
DOM操作带来的页面 Repaints 和 Reflows 是不可避免的,但可以遵循一些最佳实践来最大限度地减少Repaints 和 Reflows。如下是一些具体的实践方法:
3.1、合并多次的DOM操作
// bad
var left = 10,
top = 10;
el.style.left = left + "px";
el.style.top = top + "px";
// better
el.className += " theclassname";
// better
el.style.cssText += "; left: " + left + "px; top: " + top + "px;";
由于与渲染树更改相关的 Repaints and Reflows 是代价非常高,因此现代浏览器针对频繁的 Repaints and Reflows 有性能的优化。 一个策略是浏览器将设置脚本所需更改的队列,并分批执行。 这样,每个需要 Reflows 的几个变化将被组合,并且将仅计算一个 Reflows 。 浏览器可以添加排队的更改,然后在一定时间过去或达到一定数量的更改后刷新队列(并不是所有的浏览器都存在这样的优化。推荐的方式是把DOM操作尽量合并)。但有时脚本可能会阻止浏览器优化 Reflows ,并使其刷新队列并执行所有批量更改。 当您请求如下样式信息时(并非包含全部),会发生这种情况。见下图:
以上所有这些基本上都是请求有关节点的样式信息,浏览器必须提供最新的值。 为了做到这一点,它需要应用所有计划的更改,刷新队列,强行回流。所以在有大批量DOM操作时,应避免获取DOM元素的布局信息,使得浏览器针对大批量DOM操作的优化不被破坏。如果需要这些布局信息,最好是在DOM操作之前就去获取。
//bad
var bstyle = document.body.style;
bodystyle.color = 'red';
tmp = computed.backgroundColor;
bodystyle.color = 'white';
tmp = computed.backgroundImage;
bodystyle.color = 'green';
tmp = computed.backgroundAttachment;
//better
tmp = computed.backgroundColor;
tmp = computed.backgroundImage;
tmp = computed.backgroundAttachment;
bodystyle.color = 'yellow';
bodystyle.color = 'pink';
bodystyle.color = 'blue';
3.2、让DOM元素脱离渲染树(render Tree)后修改
(1)使用文档片段
DocumentFragments 是DOM节点。它们不是主DOM树的一部分。通常的用例是创建文档片段,将元素附加到文档片段,然后将文档片段附加到DOM树。在DOM树中,文档片段被其所有的孩子所代替。因为文档片段存在于内存中,并不在DOM树中,所以将子元素插入到文档片段时不会引起页面回流(Reflow)。当然,最后一步把文档片段附加到页面的这一步操作还是会造成回流(Reflow)。
var fragment = document.createDocumentFragment();
// 一些基于fragment的大量DOM操作
...
document.getElementById('myElement').appendChild(fragment);
(2)通过设置DOM元素的display样式为none来隐藏元素
原理是先隐藏元素,然后基于元素做DOM操作,经过大量的DOM操作后才把元素显示出来。
var myElement = document.getElementById('myElement');
myElement.style.display = 'none';
// 一些基于myElement的大量DOM操作
...
myElement.style.display = 'block';
(3)克隆DOM元素到内存中
这种方式是把页面上的DOM元素克隆一份到内存中,然后再在内存中操作克隆的元素,操作完成后使用此克隆元素替换页面中原来的DOM元素。
var old = document.getElementById('myElement');
var clone = old.cloneNode(true);
// 一些基于clone的大量DOM操作
...
old.parentNode.replaceChild(clone, old);
3.3、使用局部变量缓存样式信息
获取DOM的样式信息会有性能的损耗,所以如果存在循环调用,最佳的做法是尽量把这些值缓存在局部变量中。
// bad
function resizeAllParagraphsToMatchBlockWidth() {
for (var i = 0; i < paragraphs.length; i++) {
paragraphs[i].style.width = box.offsetWidth + 'px';
}
}
// better
var width = box.offsetWidth;
function resizeAllParagraphsToMatchBlockWidth() {
for (var i = 0; i < paragraphs.length; i++) {
paragraphs[i].style.width = width + 'px';
}
}
3.4、 设置具有动画效果的DOM元素为固定定位
使用绝对定位使得该元素在渲染树中成为 body 下的一个直接子节点,因此当它进行动画时,它不会影响太多其他节点。
4、具体例子
4.1、浏览器的批处理及回流
以下会通过一个具体例子来说明,链接地址如下:reflow。
第一次点击的代码如下:
function touch() {
bodystyle.color = 'red';
bodystyle.padding = '1px';
tmp = computed.backgroundColor;
bodystyle.color = 'white';
bodystyle.padding = '2px';
tmp = computed.backgroundImage;
bodystyle.color = 'green';
bodystyle.padding = '3px';
tmp = computed.backgroundAttachment;
}
第二次点击的代码如下:
function touchlast() {
tmp = computed.backgroundColor;
tmp = computed.backgroundImage;
tmp = computed.backgroundAttachment;
bodystyle.color = 'yellow';
bodystyle.padding = '4px';
bodystyle.color = 'pink';
bodystyle.padding = '5px';
bodystyle.color = 'blue';
bodystyle.padding = '6px';
}
以下我们将通过谷歌工具来查看这两次操作有什么异同。
4.1.1、首先用谷歌浏览器打开如上的链接。按下F12,切换到Performance选项
结果如下图:
4.1.2、按下ctrl + E(或者点击小圆点)开始录制,点击 body 区域,待文字变成绿色后点击“stop”停止录制
结果如下图:
4.1.3、选中上图中蓝色(js堆)突然升高的部分,表示刚才点击body的过程,滚动鼠标放大主线程
结果如下图,注意箭头指的地方:
从上图我们可以很容易看到在点击body的过程中,浏览器计算了3次样式。
4.1.4、点击圆点旁边的clear按钮清空,重复上述的操作,直到文字变蓝色停止:
结果如下图,注意箭头指的地方:
从上图我们可以很容易看到在再次点击body的过程中,浏览器只计算了1次样式。从而可以证明我们上述的浏览器批处理的结论。未优化的Rendering(渲染)时间为0.4ms,而优化后的Rendering(渲染)时间为0.3ms,在这么小的js执行都有这么大的差别,在一些操作DOM频繁的动画中,浪费的性能可想而知,后面将会有一个动画的例子可以直观的看出来。
4.2、频繁回流造成的影响
谷歌文档给的例子,链接地址如下:animation。
优化前的代码:
var pos = m.classList.contains('down') ?
m.offsetTop + distance : m.offsetTop - distance;
if (pos < 0) pos = 0;
if (pos > maxHeight) pos = maxHeight;
m.style.top = pos + 'px';
if (m.offsetTop === 0) {
m.classList.remove('up');
m.classList.add('down');
}
if (m.offsetTop === maxHeight) {
m.classList.remove('down');
m.classList.add('up');
}
优化后的代码:
var pos = parseInt(m.style.top.slice(0, m.style.top.indexOf('px')));
m.classList.contains('down') ? pos += distance : pos -= distance;
if (pos < 0) pos = 0;
if (pos > maxHeight) pos = maxHeight;
m.style.top = pos + 'px';
if (pos === 0) {
m.classList.remove('up');
m.classList.add('down');
}
if (pos === maxHeight) {
m.classList.remove('down');
m.classList.add('up');
}
先节流 cpu,然后加多小 谷歌 图标,直到图标速度明显减慢,再点击 Optimize 优化按钮,可以明显感受出差距。
评论区